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1 Introduction

``I believe that a good theory combines mathematical
rigor with physical interpretation.'' With these words,
Klaus Ruedenberg began a summary of the highlights of
his scienti®c career in 1996. Many seminal papers by this
giant in the ®eld of quantum chemistry serve to illustrate
this philosophy; none accomplish the task with more
beauty and insight than ``The physical nature of the
chemical bond'' [1]. This paper and those that followed
it [2±4] represent the ®rst rigorous, ®rst-principles
analysis of the fundamental quantum mechanical origins
of covalent bonding which, as Mulliken [5] noted in
1977, ``are commonly misunderstood''. With the insight
that has become his trademark, Ruedenberg combined
four fundamental precepts ± the virial theorem, wave±
particle duality, the variational principle and the
decomposition of the total energy into kinetic and
potential components ± to devise a model that is both
simple and broadly applicable. This paper clearly
establishes the important point that it is ``possible to
extract from a rigorous wavefunction (or a bona®de
approximation to it), in a quantitative fashion, a
partitioning of the energy which justi®es conceptual
interpretations.''

The guiding principle in the ``chemical bond'' paper is
the endeavor to isolate the energy-lowering that is
associated with bond formation and then to further
isolate that contribution to the energy-lowering that is
fundamentally quantum mechanical in nature. This is
accomplished by proposing a ``reaction mechanism''
that is constructed in such a way that the virial theorem
and the variational principle combine to force the
energy-lowering, thereby enabling the decomposition
into kinetic and potential-energy contributions to
emerge in a natural and easily understandable manner.
This focus on the energy-lowering upon bond formation

is critical, since it is precisely with this lowering that we,
as chemists, identify bond formation. Additionally, we
associate the strength of a bond with the magnitude of
the energy decrease. The use of the virial theorem allows
for a direct connection with classical physical concepts
as is illustrated beautifully in the 1970 paper by Feinberg
et al. [2] in the section entitled ``The paradox, analogy to
space travel.''

2 Discussion

The underlying basis for the analysis of the chemical
bond may be understood by considering the simplest
chemical bond ± that which is formed when a hydrogen
atom and a proton combine to make H�2 , the hydrogen
molecule ion [3]:

H�H� ! H�2 �1�
In the simplest possible case, the two nuclear centers
each support one 1s (atomic) wavefunction with which
to accommodate electronic motion, and one imagines
the formation of a molecular wavefunction W from the
two atomic wavefunctions 1sa and 1sb as the two atoms
come together,

W � N�1sa � 1sb� ; �2�
where N is a normalization constant. The + and ) in
Eq. (2) correspond to the bonding and antibonding
molecular wavefunctions, respectively, since they cor-
respond to energy-lowering and energy-raising, respec-
tively. For the bonding wavefunction,

N � �2�1� Sab��ÿ1=2 ; �3�
where Sab is the overlap of the two atomic wavefunc-
tions. Then, the electron density for the wavefunction in
Eq. (2) is

qqm � W�W � �2�1� Sab��ÿ1�1sa � 1sb�2 : �4�
A fundamental point regarding qqm is to note that to
obtain a quantum mechanical probability density, one
®rst adds the appropriate wavefunctions. In contrast,Correspondence to: M.S. Gordon
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classically, one would simply add the corresponding
densities to obtain the (normalized) composite proba-
bility density,

qcl � 1=2�qa � qb� � 1=2�1s2a � 1s2b� ; �5�
Therefore, the inherently quantum mechanical contri-
bution to the density is the di�erence between qqm and
qcl. Since this di�erence ultimately may be traced to the
wave nature of our treatment of electrons, and, in
particular to the interference of the waves that we refer
to here as atomic wavefunctions, Ruedenberg termed
this di�erence density the interference density, qI:

qI � qqm ÿ qcl � �1� Sab�ÿ1
� �1sa1sb ÿ 1=2Sab�1s2a � 1s2b�� : �6�

Since both the classical and quantum mechanical
densities must integrate to the correct number of
electrons in the system (in this case, 1), the interference
density must integrate to zero over all space. So, the
interference density represents the rearrangement of
electron density, with respect to the classical density of
Eq. (5), that occurs when the two atoms approach each
other. A plot of this rearrangement density along the
internuclear axis for the bonding wavefunction at
the equilibrium internuclear distance exhibits the well-
known buildup of electron density in the bond region
between the nuclei, at the expense of a concomitant
depletion of electron density around the nuclei. The
reverse would, of course, be true for the higher energy
antibonding wavefunction.

This decomposition of the total density in terms of a
classical and an inherently quantum mechanical inter-
ference contribution leads to an analogous resolution of
the energy. By considering the energy in a similar light,
one may approach the quantum mechanical origins of
the energy-lowering responsible for covalent binding. In
considering the energy changes due to formation of a
covalent bond, Ruedenberg notes that the application of
the variational principle to minimize the energy of the
newly formed molecule necessarily (due to the virial
theorem) requires the balance of two competing factors.
This competition arises as a result of the alteration of the
electron probability density from a compact distribution
around two separated atoms to a more di�use distribu-
tion of the electron density on the two, now bonded,
atoms. Due to the nature of the kinetic-energy operator,

T � ÿ1=2r2 �7�
this relaxation of electron density relieves the kinetic-
energy pressure: i.e., it reduces the kinetic energy relative
to the atoms. On the other hand, the same relaxation of
the electron density distribution reduces the magnitude
of the nuclear suction; i.e., the potential due to electron±
nuclear attraction is attenuated since the electron density
is less concentrated around the nuclei. It is the balance
between these two competing phenomena that is critical
in determining the nature of the chemical bond.

To place the foregoing on a more quantitative foot-
ing, consider the formation of H�2 from H + H+ to
occur in two steps. We begin with H described by the

exact 1s wavefunction (exponent = 1.0), with an iden-
tical 1s wavefunction centered on the in®nitely separated
proton. The electron density may then be described
as either q � qa or q � qb, depending whether a or b
is the proton. An energetically equivalent description
is q � 1=2�qa � qb�. In the ®rst step, H and H+ are
brought from in®nity to their equilibrium internuclear
separation of 2.0 bohr in such a manner that the expo-
nent on the 1s wavefunctions remains 1.0. The energy
change due to this step is almost certainly negative (ex-
oergic), due to the formation of the covalent bond. The
second step is simply to permit the molecular wave-
function, given by Eq. (2), to relax its exponent (and
thereby the radial distribution) from 1.0 to the optimum
1.24 and thus re-establish the virial relation V = )2T.
An energy decrease for this step is guaranteed by the
variational principle. One may then calculate the chan-
ges in the total (E), kinetic (T ) and potential (V, in-
cluding nuclear repulsion) energies for each step and for
the overall process. The results are presented in Table 1.
In the ®rst step, bond formation, the energy decrease is
driven by release of the kinetic-energy pressure, due to
the spreading out of the electron density over the two
nuclear centers. In the second step, the electron density is
contracted (the wavefunction becomes more compact) as
the exponent of the wavefunction increases from 1.0 to
1.24. This causes an increase in the kinetic-energy pres-
sure (illustrated by the positive value of DT for this step)
and a concomitant decrease in the potential-energy
suction, as the electron density contracts around the
nuclei; however, the total energy-lowering is smaller
than for step 1.

Note that the energies quoted in Table 1 do not
correspond to the exact H�2 bond energy. This is because
there is an additional step, in which polarization is
introduced into the wavefunction. This is discussed
in detail in the original papers by Ruedenberg and
coworkers.

The foregoing analysis may be more directly con-
nected with the decomposition of the electron density
into classical and interference components by consider-
ing an alternative ``mechanism'' for the formation of
H�2 . In this second two-step mechanism, we ®rst contract
the H atom wavefunction by increasing its orbital ex-
ponent from the optimum value of 1.0 to the ®nal H�2
value of 1.24. One may think of this as a contractive
promotion step, analogous to the hybridization of
the orbitals of a carbon atom in preparation for the
formation of methane. This step costs energy, but it
is energy that will be recovered upon bond formation.

We next de®ne the total molecular potential energy,
Vmol, as

Table 1. Energetics (hartree) for two-step formation of H�2

DT DV DE

Step 1 )0.1138 +0.0600 )0.0538
Step 2 +0.2009 )0.2336 )0.0327

Total +0.0871 )0.1736 )0.0865
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V mol � ÿ WjZ=ra � Z=rbjWh i � Z=Rab

� ÿ�2�1� Sab��ÿ1
� �1sa � 1sb�jZ=ra � Z=rbj�1sa � 1sb�h i � Z=Rab;

�8�
where Z is the nuclear charge, ra is the distance from an
electron on atom A from its nucleus, and Rab is the
internuclear distance. Vmol contains (a) the attractions
of the electron density on an atom for its own nucleus,
(b) the attractions of electron density on one atom for
the other nucleus, and (c) the attraction of the interfer-
ence density for both nuclei. To separate these contri-
butions, we de®ne VA as the atomic attraction, VQC as
the two-center quasiclassical (QC) attraction, and VI as
the attraction due to interference:

VA � ÿ 1sajZ=raj1sah i
� ÿ1=2� 1sajZ=raj1sah i � 1sbjZ=rbj1sbh i� �9�

V QC � ÿ1=2� 1sajZ=rbj1sah i � 1sbjZ=raj1sbh i�
� 1=Rab �10�

V I � �1� Sab�ÿ1� 1saj ÿ Z=ra ÿ Z=rbj1sbh i
ÿ 1=2Sab� 1saj ÿ Z=ra ÿ Z=rbj1sah i
� 1sbj ÿ Z=ra ÿ Z=rbj1sbh i�� �11�

V mol � VA � VQC � VI : �12�
For the ground-state hydrogen atom,

VH � ÿ 1sajZ=raj1sah i : �13�
For an exponent of 1.0, VA = VH, so upon bond
formation at a ®xed exponent of 1.0, the change in
potential energy is given by

DV � VQC � VI : �14�
In general,

DV � �VA ÿ VH� � VQC � VI � VCP � VQC � VI ; �15�
where VCP is the energy increase due to the contractive
promotion that occurs when the exponent is increased to
1.24. The kinetic energy can be partitioned in a similar
manner, except, of course, that there is no analog for the
two-center classical (QC) term:

DT � TCP � TI : �16�
These energy di�erences are summarized in Table 2. It is
clear from Table 2 that

1. The driving force for covalent bonding in H�2 is
the constructive interference contribution to the kinetic
energy.

2. The wavefunction contraction, and thus the lower
®nal potential energy, is not directly due to the sharing
of electrons as was generally believed prior to the
publication of this paper. Rather, it is ``atomic'' in
nature.

An examination of the antibonding wavefunction, at
the ground-state equilibrium internuclear distance of 2.0
bohr, reveals an analogous energy decomposition: the
energy increase arises from the destructive interference
contribution to the kinetic energy. Similar conclusions
were arrived at by the Ruedenberg group for studies on
more complex molecules, and also by Kutzelnigg [6] and
Mulliken [5].

The important role of the electronic kinetic energy,
®rst established by Ruedenberg for covalent bonding has
been demonstrated for many other important chemical
phenomena such as steric repulsion [7], ionization po-
tentials [8], three-center/two-electron bonding [9], and
hydrogen bonding [10]. Thus, this very general concep-
tual framework serves to highlight the similarities and
di�erences between these diverse situations.

3 Concluding remarks

The essence of this model of the chemical bond may be
summarized as follows

1. The origins of covalent chemical bonding lie in the
kinetic-energy lowering caused by interference e�ects
that arise from the fundamentally quantum mechanical
wave±particle duality. ``¼the interference energy owes
its binding e�ect entirely to a lowering of the kinetic
energy¼the interference process is unfavorable as re-
gards the potential energy. The ubiquitous statement
that overlap accumulation of electrons in a bond leads to
a lowering of the potential energy is based on fallacious
reasoning.''

2. ``The wave mechanical kinetic behavior, which
di�ers typically from the classical behavior¼is a fun-
damentally essential element of covalent bonding. Any
explanation of chemical binding based essentially on
an electrostatic, or any other nonkinetic concept, misses
the very reason why quantum mechanics can explain
chemical binding, whereas classical mechanics cannot.''

3. While the formulation of the model is most com-
monly made in terms of atomic orbital components,
it does not rely on such a formulation and is quite
general.

Table 2. Energetics (hartree)
for bond formation in H�2

H�2 exponent = 1.0 H�2 exponent = 1.24

DT DV DE DT DV DE

Contractive 0.0 0.0 0.0 0.2672 )0.2387 0.0285
Promotion two-center 0.0 0.0275 0.0275 0.0 0.0123 0.0123
Classical interference )0.1138 0.0325 )0.0813 )0.1801 0.0528 )0.1273

Total binding )0.1138 0.0600 )0.0538 0.0871 )0.1736 )0.0865
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4. While any energy decomposition is necessarily ar-
bitrary, such pictures are useful, since ``they allow us to
visualize and predict similarities and di�erences in the
solution of the SchroÈ dinger equation for di�erent mol-
ecules without continuous appeal to an electronic com-
puter.'' This comment, expressed originally in 1962, is
even more relevant today.
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